Stanford RAIN (Research on Algorithms and Incentives in Networks) Seminar

The Internet is a complex network made of both machines and people, and hence, problems in this domain often require techniques from both algorithms and the social sciences. The RAIN (Research on Algorithms and Incentives in Networks) seminar, supported by SOAL, provides a gathering place for talks and social discussion in this area.

Upcoming Talks

Feb. 26, 2024
Panos Toulis
Experimental Designs for Structural Economic Models on Large Networks
→ Abstract and Bio This talk presents an ongoing large field experiment in a country of South America that randomizes tax audit notices (treatment) to firms connected through a large network of VAT transactions. While the ultimate goal is to optimize tax audit policy, the short-term goal is to estimate causal effects of tax audit notices on firm behavior. Of particular interest is to understand spillovers, that is, the response of firms that are not treated but are connected to other firms that are treated. First, I will discuss why current popular approaches to experimenting on networks are limited by the reality of inter-firm networks, such as their size, high interconnectivity and heavy-tailed degree distributions. I will then describe an approach to experimentation that leverages subtle sub-structures in the network. This approach is specifically designed to allow the application of Fisherian-style permutation tests of causal effects. These testing procedures are computationally efficient and finite-sample valid, qualities that are important for testing in a robust way the parameters of structural economic models.

Bio: Panos Toulis studies causal inference in complex settings (e.g., networks) through resampling methods such as permutation tests. These methods are model-agnostic and thus have a degree of robustness not afforded by classical model-based statistlcal methods. He is also interested in the design of experiments on networks, and generally the interface between statistics and optimization. His research has been published in the Journal of the Royal Statistical Society, Annals of Statistics, Biometrika, Journal of the Americal Statistical Association, Journal of Econometrics, Statistics and Computing, and Games and Economic Behavior, as well as in major machine learning and economics conferences. For his research, Toulis has received the Arthur P. Dempster Award from Harvard University’s Department of Statistics, the LinkedIn Economic Graph Challenge award, and the 2012 Google United States/Canada PhD Fellowship in statistics. Toulis got his PhD in statistics from Harvard University, advised by Edo Airoldi, David Parkes, and Don Rubin. He also holds MS degrees in statistics and computer science from Harvard University, and a BS in electrical and computer engineering from Aristotle University in Thessaloniki, Greece. Outside of academia, he has prior corporate experience in software engineering at Google Inc. and at startup companies in Greece. He also enjoys science fiction, history, and politics.
Mar. 4, 2024
Sophie Yu
→ Abstract and Bio TBD

Bio: TBD

Previous Talks This Year

Sept. 29, 2023
Elaine Shi
Decentralized Mechanism Design
→ Abstract and Bio In transaction fee mechanism design, users bid to get their transactions confirmed in the block. Classical auctions completely fail in such a decentralized environment where even the auctioneer (i.e., miners) can be a strategic player. Further, the miners can collude with a subset of the users, e.g., facilitated by real-world platforms like Flashbots. A line of works have attempted to devise a 'dream' transaction fee mechanism but all have failed. In this talk, I will first show that this is not a coincidence --- in fact, there is a fundamental mathematical barrier towards achieving a 'dream' transaction fee mechanism. Then, I will explain how to overcome impossibilities with the help of cryptography, leading to practical mechanisms that achieve good social welfare and revenue.

Bio: Elaine Shi is an Associate Professor at Carnegie Mellon University. Prior to joining CMU, she taught at Cornell and the University of Maryland. Her research interests include cryptography, security, algorithms, mechanism design, and foundations of blockchains. She has won numerous awards such as the Sloan Fellowship, the Packard Fellowship, the ONR YIP award, the NSA Best Science of Cybersecurity Paper award, Cylab Distinguished Alumni Award, and various other best paper awards. Her work on Oblivious RAM and privacy-preserving algorithms have been deployed at a large scale by companies like Signal, Google, and JP Morgan.
Oct. 2, 2023
Alex Teytelboym
Equilibrium Existence and Implementability
→ Abstract and Bio We explore equilibria in markets with money and in pseudomarkets when there are indivisible goods. We show that under a regularity condition, competitive equilibria exist in a transferable utility economy if and only if all random equilibria in a pseudomarket are implementable as a lottery over allocations. Our paper bridges two core models of competitive market designs for indivisible resources and generates new implementability and maximal domain results for pseudomarkets. One consequence is that random equilibria in pseudomarkets are implementable even in the presence of complementarities which feature in existing pseudomarkets, such as course assignment. We provide further equivalence results in the presence of ex-post individual (e.g., technological) constraints, ex-ante individual (e.g., budget) constraints, priorities (e.g., school choice), and ex-post aggregate (e.g., diversity) constraints.

Bio: Alex Teytelboym is a Professor of Economics at the Department of Economics, University of Oxford, a Tutorial Fellow at St. Catherine’s College, and a Senior Research Fellow at the Institute for New Economic Thinking at the Oxford Martin School. He directs the Oxford University Business Economics Programme. His research interests lie mainly in market design and the economics of networks. He is also interested in environmental economics and is part of the Leverhulme Centre for Nature Recovery. He often advises companies, governments and NGOs on auction and market design. He is also co-founder of Refugees.AI, an organisation that is developing new technology for refugee resettlement (originally funded by Skoll Centre for Social Entrepreneurship).
Oct. 23, 2023
Emre Kiciman
Causal inference and LLMs: A new frontier
→ Abstract and Bio The causal capabilities of large language models (LLMs) is a matter of significant debate, with critical implications for the use of LLMs in societally impactful domains such as medicine, science, law, and policy. We further our understanding of LLMs and their causal implications, considering the distinctions between different types of causal reasoning tasks, as well as the entangled threats of construct and measurement validity. LLM-based methods establish new state-of-the-art accuracies on multiple causal benchmarks. Algorithms based on GPT-3.5 and 4 outperform existing algorithms on a pairwise causal discovery task (97%, 13 points gain), counterfactual reasoning task (92%, 20 points gain), and actual causality (86% accuracy in determining necessary and sufficient causes in vignettes). At the same time, LLMs exhibit unpredictable failure modes and we provide some techniques to interpret their robustness. Crucially, LLMs perform these causal tasks while relying on sources of knowledge and methods distinct from and complementary to non-LLM based approaches. Specifically, LLMs bring capabilities so far understood to be restricted to humans, such as using collected knowledge to generate causal graphs or identifying background causal context from natural language. We envision LLMs to be used alongside existing causal methods, as a proxy for human domain knowledge and to reduce human effort in setting up a causal analysis, one of the biggest impediments to the widespread adoption of causal methods. We also see existing causal methods as promising tools for LLMs to formalize, validate, and communicate their reasoning especially in high-stakes scenarios. In capturing common sense and domain knowledge about causal mechanisms and supporting translation between natural language and formal methods, LLMs open new frontiers for advancing the research, practice, and adoption of causality.

Bio: Emre Kiciman is a Senior Principal Researcher at Microsoft Research, where his research interests span causal inference, machine learning, the security of AI systems, and AI’s implications for people and society. Emre is a co-founder of the DoWhy library for causal machine learning. For publications and talks, please visit
Oct. 30, 2023
Jason Hartline
Regulation of Algorithmic Collusion
→ Abstract and Bio Consider sellers in a competitive market that use algorithms to adapt their prices from data that they collect. In such a context it is plausible that algorithms could arrive at prices that are higher than the competitive prices and this may benefit sellers at the expense of consumers (i.e., the buyers in the market). This paper gives a definition of algorithmic non-collusion for pricing algorithms. The definition allows a regulator to empirically audit algorithms by applying a statistical test to the data that they collect. Algorithms that are good, i.e., approximately optimize prices to market conditions, can be augmented to collect the data sufficient to pass the audit. Algorithms that have colluded on, e.g., higher-than-competitive prices cannot pass the audit. The definition allows for the possession of useful side information which, e.g., may be correlated with supply and demand and should affect the prices used by good algorithms. The paper provides an analysis of the statistical complexity of such an audit, i.e., how much data is sufficient for the test of non-collusion to be accurate. Joint work with Sheng Long and Chenhao Zhang.

Bio: Jason Hartline received his Ph.D. in 2003 from the University of Washington under the supervision of Anna Karlin. He was a postdoctoral fellow at Carnegie Mellon University under the supervision of Avrim Blum; and subsequently a researcher at Microsoft Research in Silicon Valley. He joined Northwestern University in 2008 where he is a professor of computer science. He was on sabbatical at Harvard University in the Economics Department during the 2014 calendar year and visiting Microsoft Research, New England for the Spring of 2015. He is the director of Northwestern’s Online Markets Lab, he was a founding codirector of the Institute for Data, Econometrics, Algorithms, and Learning from 2019-2022, and is a cofounder of virtual conference organizing platform Virtual Chair.
Nov. 6, 2023
Robert Kleinberg
U-Calibration: Forecasting for an Unknown Agent
→ Abstract and Bio We consider the problem of evaluating forecasts of binary events when predictions are consumed by rational agents who take an action in response to a prediction, but whose utility is unknown to the forecaster. We show that optimizing forecasts for a single scoring rule (e.g., the Brier score) cannot guarantee low regret for all possible agents. In contrast, forecasts that are well-calibrated guarantee that all agents incur sublinear regret. However, calibration is not a necessary criterion here; it is possible for miscalibrated forecasts to provide good regret guarantees for all possible agents. Moreover, calibrated forecasting procedures have provably worse convergence rates than forecasting procedures targeting a single scoring rule. Motivated by this, we present a new metric for evaluating forecasts that we call U-calibration, equal to the maximal regret of the sequence of forecasts when evaluated under any bounded scoring rule. We show that sublinear U-calibration error is a necessary and sufficient condition for all agents to achieve sublinear regret guarantees. We additionally demonstrate how to compute the U-calibration error efficiently and provide an online algorithm that achieves asymptotically optimal U-calibration error (on par with optimal rates for optimizing for a single scoring rule, and bypassing lower bounds for the traditionally calibrated learning procedures). Finally, we discuss generalizations to the multiclass prediction setting. This talk is joint work with Renato Paes Leme, Jon Schneider, and Yifeng Teng.

Bio: Bobby Kleinberg is a Professor of Computer Science at Cornell University and a part-time Faculty Researcher at Google. His research concerns algorithms and their applications to machine learning, economics, networking, and other areas. Prior to receiving his doctorate from MIT in 2005, Kleinberg spent three years at Akamai Technologies; he and his co-workers received the 2018 SIGCOMM Networking Systems Award for pioneering the first Internet content delivery network. He is a Fellow of the ACM and a recipient of the ACM SIGecom Mid-Career Award for advancing the understanding of on-line learning and decision problems and their application to mechanism design.
Nov. 13, 2023
Bruno Ribeiro
Causal Lifting and Causal Identification in Link Prediction using Neural Networks
→ Abstract and Bio In this talk, we consider a small piece of the larger puzzle of endowing state-of-the-art neural networks with the ability to perform causal reasoning. First, we will cover the rich literature on causal identification under peer effects, both under intrinsic factors and path-dependent graph evolution models. Then, I will introduce “Causal Lifting”, which generalizes the earlier causal identification methods for both nodes and edges under network effects, also unveiling a fundamental difference between estimating causal effects on nodes from effects on edges. Finally, we will explore how Causal Lifting aligns causal identification seamlessly with how we design state-of-the-art neural network models for relational reasoning tasks, which can then be integrated with chatbots such as ChatGPT.

Bio: Bruno Ribeiro is an Associate Professor in the Department of Computer Science at Purdue University, currently a Visiting Associate Professor at Stanford University. Prior to joining Purdue in 2015, he earned his Ph.D. from the University of Massachusetts Amherst and was a postdoctoral fellow at Carnegie Mellon University. Ribeiro is interested in the intersection between relational learning and causality in deep learning. Ribeiro received an NSF CAREER award in 2020, an Amazon Research Award in 2022, and multiple best paper awards.
Dec. 4, 2023
Shuchi Chawla
Revisiting revenue maximization for many buyers: buy-many mechanisms and sequential posted pricing
→ Abstract and Bio A recent line of research has established a novel desideratum for designing approximately-revenue-optimal multi-item mechanisms, namely the buy-many constraint. Under this constraint, prices for different allocations made by the mechanism must be subadditive implying that the price of a bundle cannot exceed the sum of prices of individual items it contains. This natural constraint has enabled several positive results in multi-item mechanism design bypassing well-established impossibility results. Our work addresses a main open question from this literature involving the design of buy-many mechanisms for multiple buyers. We show that a simple sequential item pricing mechanism with buyer-specific prices can achieve an O(log m) approximation to the revenue of any buy-many mechanism when all buyers have unit-demand preferences over m items. This is the best approximation possible as it directly matches the previous results for the single-buyer setting where no simple mechanism can obtain a better approximation. En route to proving this result we define and prove a multi-dimensional online contention resolution scheme (OCRS) for revenue. This is joint work with Rojin Rezvan (UT-Austin), Yifeng Teng (Google Research), and Christos Tzamos (UW-Madison).

Bio: Shuchi Chawla holds an Endowed Professorship in Computer Science at UT-Austin and is an Amazon Scholar. Shuchi is a theoretical computer scientist specializing in the areas of algorithm design and economics and computation. Prior to joining UT-Austin, she spent 15 years as a professor of CS at the University of Wisconsin-Madison. Shuchi is the recipient of an NSF Career award, a Sloan Foundation fellowship, and several awards for her research and teaching at UW-Madison. Shuchi recently served as the PC Chair of SODA'20 and EC'21, and currently serves on the editorial boards of the SIAM Journal of Computing, the ACM Transactions on Algorithms and the ACM Transactions on Economics and Computation.
Dec. 11, 2023
Grant Schoenebeck
Mechanisms To Procure Information Without Verification
→ Abstract and Bio In a wide variety of contexts including peer grading, peer review, and crowd-sourcing (e.g. evaluating LLM outputs) we would like to design mechanisms which reward agents for producing high quality responses. Unfortunately, computing rewards by comparing to ground truth or gold standard is often cumbersome, costly, or impossible. Instead we would like to compare agent reports. First, we will argue the importance of creating measurements of agent response quality that are both accurate and strategy-proof (agents do not benefit by intentionally falsely reporting). Second, we will illustrate that previous solutions only achieve one of these desiderata: naïve mechanisms fail to be strategy-proof, yet existing strategy-proof mechanisms are much less accurate than the naïve mechanisms in evaluating response quality. Third, we will show how to create mechanisms that are both strategy-proof and (reasonably) accurate. The key theoretical technique is a variational interpretation of mutual information, which permits machine learning to estimate mutual information using only a few samples (and likely has other applications in machine learning even beyond the strategic settings). Finally, time permitting, we will survey future directions for the field.

Bio: Grant Schoenebeck is an associate professor at the University of Michigan in the school of information. His work spans diverse areas in theoretical computer science but has recently focused on combining ideas from theoretical computer science, machine learning, and economics (e.g game theory, mechanism design, and information design) to develop and analyze systems for eliciting and aggregating information from of diverse group of agents with varying information, interests, and abilities. His research is supported by the NSF including an NSF CAREER award. Before coming to the University of Michigan in 2012, he was a Postdoctoral Research Fellow at Princeton. Grant received his PhD at UC Berkeley, studied theology at Oxford University, and received his BA in mathematics and computer science from Harvard.
Feb. 12, 2024
Yuqing Kong
Eliciting Information Without Verification from Humans and Machines
→ Abstract and Bio Many application domains rely on eliciting high-quality (subjective) information. This presentation will talk about how to elicit and aggregate information from both human and machine participants, especially when the information cannot be directly verified. The first part of the talk presents a mechanism, DMI-Mechanism, designed to incentivize truth-telling in the setting where participants are assigned multiple multi-choice questions (e.g. what’s the quality of the above content? High/Low). DMI-Mechanism ensures that truthful responses are more rewarding than any less informative strategy. The implementation of DMI-Mechanism is straightforward, requiring no verification or prior knowledge, and involves only two participants and four questions for binary-choice scenarios. When applied to machine learning, DMI-Mechanism results in a loss function that is invariant to label noise. The second part of the talk discusses the elicitation of information not just from humans but also from machines. Recognizing the limitations in time and resources that humans and machines have, the talk introduces a method to elicit and analyze the 'thinking hierarchy' of both entities. This approach not only facilitates the aggregation of information when the majority of agents are at less sophisticated 'thinking' levels but also provides a unique way to compare humans and machines. This talk is based a series of works including Kong (SODA 2020, ITCS 2022, JACM 2024), Xu, Cao, Kong, Wang (NeurIPS 2019), Kong, Li, Zhang, Huang, Wu (NeurIPS 2022), Huang, Mei, Kong (2024).

Bio: Yuqing Kong is currently an assistant professor at The Center of Frontier Computing Science (CFCS), Peking University. She obtained her Ph.D. degree from the Computer Science and Engineering Department at University of Michigan in 2018 and her bachelor degree in mathematics from University of Science and Technology of China in 2013. Her research interests lie in the intersection of theoretical computer science and the areas of economics: information elicitation, prediction markets, mechanism design, and the future applications of these areas to crowdsourcing and machine learning.

Previous talks can be found here.

About The Seminar

Seminar Organizers: Itai Ashlagi, Mohak Goyal, Tristan Pollner.

Faculty Involved: Itai Ashlagi, Ashish Goel, Ramesh Johari, Amin Saberi, Aaron Sidford, Johan Ugander, Irene Lo, Ellen Vitercik.

Note for Speakers: The talk is 55 minutes including questions (as we often start a couple of minutes late). If you are giving a talk at RAIN, please plan a 45-50 minute talk since the audience usually ask a lot of questions. Also, the audience is fairly knowledgeable, so speakers should not feel obligated to provide basic game-theoretic, algorithmic, societal, industrial, probabilistic, or statistical background.

Website template from the Stanford MLSys Seminar Series.